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Abstract

We describe the application of1H NMR spectroscopy and chemometrics to the analysis of extracts ofArtemisia annua.
This approach allowed the discrimination of samples from different sources, and to classify them according to anti-plasmodial
activity without prior knowledge of this activity. The use of partial least squares analysis allowed the prediction of actual values
for anti-plasmodial activities for independent samples not used in producing the models. The models were constructed using
approximately 70% of the samples, with 30% used as a validation set for which predictions were made. Models generally
explained >90% of the variance,R2 in the model, and had a predictive ability,Q2 of >0.8. This approach was also able to
correlate1H NMR spectra with cytotoxicity (R2 = 0.9, Q2 = 0.8).

This work demonstrates the potential of NMR spectroscopy and chemometrics for the development of predictive models of
anti-plasmodial activity.
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1. Introduction

Artemisia annua L. (also known as sweet worm-
wood, or by its Chinese nameqing hao) and the
isolated constituent artemisinin (Fig. 1) have well
documented anti-plasmodial activity[1–3]. Indeed,
a whole class of anti-plasmodial drugs derived from
artemisinin are now in widespread use in single and
combination therapies, particularly where resistance
to other anti-plasmodials is present[1,4].

Whilst artemisinin has been established as an
important component ofA. annua with respect to
anti-plasmodial activity[2], it has also been sug-
gested that the efficacy of theA. annua plant itself
derives from a synergistic effect, and that it is a
combination of constituents in the plant that confer
the total anti-plasmodial activity[5,6]. Several poly-
methoxyflavones have been found to have activity in
combination with artemisinin[7], and it has been re-
ported that flavonoids enhance the anti-plasmodial ac-
tivity of artemisinin[8]. Further, the clinical efficacy
of A. annua extracts as a treatment for malaria has
been demonstrated, with 92% of malaria patients in a
study showing disappearance of parasitaemia within
4 days[9]. As a result, the potential use ofA. annua,
particularly in areas where large-scale pharmaceuti-
cal production is not possible, is clearly of interest.
However, where plant extracts themselves are to be
used, it is necessary to determine the reproducibility
and information regarding the content of such extracts
[9]. It has been shown, for example that the levels of
artemisinin and related compounds fluctuate due to
both seasonal and geographical variation[10,11].

Therefore, it is important to develop analytical
methodology that is capable of providing informa-
tion relating to a whole extract with respect to anti-
plasmodial activity, and reproducibility.1H NMR
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Fig. 1. Structure of artemisinin.

spectroscopy is one such technique that is capable of
supplying a ‘metabolic fingerprint’ and thus can give
a measure of the overall biochemical composition
of a sample. By comparing spectra from different
samples, it is possible to monitor differences in the
levels of thousands of metabolites simultaneously
and so observe the dynamic biochemical profiles.
This principle (variously termed ‘metabonomics’,
‘metabolomics’ or ‘metabolic fingerprinting’ and
‘profiling’) has been applied to many different areas
such as drug toxicity[12], clinical chemistry[13],
environmental metabolism[14,15], plant metabolism
[16,17] and recently, natural products profiling[18].
By applying chemometric data analysis techniques to
NMR spectroscopic data (or indeed, any other mul-
tivariate analytical data), mathematical models for
predicting structure–activity or structure–metabolism
relationships can be derived based on the data ob-
tained[19–22]. It should therefore be possible to use
the1H NMR spectra obtained fromA. annua extracts
along with measured anti-plasmodial activity levels to
derive quantitative extract data-activity relationships
(QEDARs) that can predict the potential activity of
samples not used in the model production process.
This is due to the fact that the chemical environment
within which each1H nucleus in a constituent is
located determines the1H NMR spectroscopic reso-
nances for a particular chemical constituent. It is also
the chemical environment and thus physico-chemical
properties that will determine whether anti-plasmodial
activity is present in a particular sample or not. Based
on the assumption that the anti-plasmodial activity of
A. annua extracts is synergistic, this ability to obtain a
comprehensive metabolite profile through NMR spec-
troscopy has the potential to provide an indication of
potential anti-plasmodial activity of a whole extract.
In addition, the fact that NMR spectra give an indi-
cation of the whole low molecular weight chemical
content of an extract means they also offer an insight
into other parameters that may be of interest, such as
cytotoxicity. Artemisinin and derivatives have been
shown to induce neuropathology in dogs and rats,
and in some cases anaemia; however, few significant
side effects have been reported in humans[23–25].
By creating separate models to predict both activity
and toxicity, the process could potentially indicate
an extract that has both the desirable anti-plasmodial
efficacy, and low toxicity.
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Previous work on single component samples has
demonstrated the application of13C NMR spectra
to predict steroids binding to corticosteroid binding
globulin [26], and the aromatase enzyme[27], and
polychlorinated compounds binding to the aryl hy-
drocarbon receptor[28] as well as predictive models
of estrogen receptor binding activities[29]. This is
the first time, however, that the approach has been
extended to complex mixtures such as plant extracts.

This paper reports on a study designed to demon-
strate a proof of concept with respect to the hypothe-
sis outlined above, and shows that the application of
NMR-based chemometrics can be used to discrimi-
nate between different accessions ofA. annua extracts.
More importantly, NMR-based chemometrics can be
used to predict the potential anti-plasmodial activity
of those extracts, in addition to toxicity.

2. Methods

2.1. Acquisition of plant samples

NineteenA. annua accessions sourced from differ-
ent locations were obtained by Oxford Natural Prod-
ucts Plc. (Oxford, UK). Samples in the form of dry
herb material, powder or tincture were deposited in
the herbarium in the Pharmacognosy laboratories at
King’s College London, UK. Voucher specimen num-
bers were as follows for sample identities 1–19 ofA.
annua L. (Compositae): AR17 10 I1, AR17 11 I2,
AR17 12 I3, AR17 13 I4, AR17 14 I5, AR17 15 I6,
AR17 16 I7, AR17 17 I8, AR17 19 I10, AR17 20 I11,
AR17 21 I12, AR17 22 I13, AR17 23 I14, AR17 24
I15, AR17 25 I16, AR17 26 I17, AR17 27 I18, AR17
28 I19, AR17 29 I20.

2.2. Sample preparation

Samples were prepared by Advanced Phyton-
ics (UK) using an extraction method covered
under International patent Application Numbers
PCT/GB95/00554, and International Publication
Number WO 95/26794.

For dry herb material, the samples (90–135 g)
were packed into a 560 ml jacketed vessel and ex-
tracted at 25◦C with a constant pumped stream of
1,1,1,2-tetrafluoroethane solvent (26–64 bed vol-

umes), at 8–10 bar over 2–5 h, until no more extract
was obtained. The solvent was removed from the
extract before collection. ForA. annua containing
powder samples, material (55–79 g), was packed
into a 212 ml vessel and extracted at 25◦C with a
constant pumped stream of 1,1,1,2-tetrafluoroethane
(21–101 bed volumes), at 8–10 bar over 2–3 h un-
til no more extract was obtained. The solvent was
again removed from the extract before collection. For
the A. annua containing tincture, material (100 ml),
was added to a glass pressure vessel and extracted
into 1,1,1,2-tetrafluoroethane (100 ml), with agita-
tion. Once settled, the solvent/ethanolic solution
was decanted, removed and the extract collected.
The remaining aqueous portion was extracted with
4× 100 ml aliquots of solvent and the extracts
combined.

Replicates (approximately 10 mg,n = 3 for 18 ex-
tracts,n = 2 for one extract due to limited material)
of freeze-dried extracts were weighed out and added
to 1 ml d6 DMSO, giving a total of 56 samples for
analysis. Samples were agitated and then centrifuged
at 13,000 rpm (ca. 14,000×g) for 15 min. Supernatant
(850�l) was removed and re-centrifuged for a further
10 min. Following the second centrifugation, super-
natant (700�l) was taken for NMR analysis.

2.3. Primary cell based in vitro screen for
anti-plasmodial activity

2.3.1. P. falciparum strain
The drug-sensitive 3D7 clone of NF54, was used in

the primary screen.
The method used for anti-plasmodial testing was

based on previously published methods[30–32].
Briefly, stock solutions ofA. annua extracts are
prepared in 100% DMSO at 10 mg/ml. A five-fold
dilution series (2×) was prepared in triplicate in
96-well plates (50�l per well) from a concentration of
25�g/ml down to 0.2�g/ml followed by the addition
of 50�l of synchronous ring stage parasite cultures
at 5% hematocrit and 1% parasitemia determined by
microscopical examination of Giemsa stained thin
blood smears. Final hematocrit and parasitaemia were
2.5 and 1%, respectively. The assay was performed in
hypoxanthine-free medium.

Plates were incubated for 24 h at 37◦C, 5% CO2
followed by addition of 20�l of 3H-hypoxanthine to
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all wells (0.1�Ci per well) [33]. After shaking for a
minimum of one minute, plates were returned to the
incubator for a further 24 h. Plates were freeze/thawed
rapidly, harvested onto a 96-well glass fibre filter mat
and dried at 42◦C. Incorporation of radioactive hypox-
anthine was measured using a Wallac 1450 BetaLux
scintillation counter.

The standard drug chloroquine diphosphate was in-
cluded in all assays in a three fold dilution series from
a top concentration of 30�g/ml down to 0.0001�g/ml.
The control wells were infected erythrocytes in the
absence of drug and blank wells were uninfected A*
erythrocytes at a final hematocrit concentration of
2.5%. Results were analysed using the Microsoft Excel
based program MsX/fit (IDBS, UK), to calculate IC50
values.

2.3.2. Cytotoxicity assay
An amount of 96-well plates were seeded with KB

cells (human or-pharyngeal carcinoma) at 2× 104/ml
(200�l per well) in 10% FCS-RPMI 1640 medium
and incubated at 37◦C in a 5% CO2/air mixture. After
24 h extracts and compounds were added at 300, 30,
3, 1 and 0.3�g/l in fresh overlay in triplicate at each
concentration. Plates were incubated for a further 72 h,
washed 3× with PBS before the addition of alamar
blue in PBS[34]. After 2 h, plates were read on a
Gemini plate reader at EX/EM 530/580 nm.

2.4. 1H NMR spectroscopy of plant extracts

NMR spectra were acquired on a Bruker DRX 600
NMR Spectrometer (Bruker GmbH, Rheinstetten,
Germany) operating at 600.22 MHz for the1H fre-
quency and fitted with a broadband inverse geometry
probe. All spectra were the result of the summation of
128 free induction decays (FIDs), with data collected
into 32 k datapoints, a spectral width ofδ 14 and an
acquisition time of 1.95 s.

The 90◦ pulse length was measured for the sam-
ples prior to data acquisition. Prior to Fourier transfor-
mation, an exponential line broadening equivalent to
0.3 Hz was applied to the FIDs and spectra were refer-
enced to DMSO atδ 2.50. Spectra for the 56 samples
were acquired in a random order, and four samples
were repeated to check for analytical reproducibility
(total of 60 NMR spectra acquired).

2.5. Multivariate data analysis

One-dimensional NMR spectra were reduced to
252 discrete chemical shift regions by digitisation to
produce a series of sequentially integrated regions
δ 0.04 in width betweenδ −0.06 and 9.98, using
Bruker AMIX software (version 2.0, Bruker GmbH,
Germany). The resulting data matrix was exported
into Microsoft® Excel 2000 and selected regions re-
moved around the water signal (δ 3.46–3.18), DMSO
(δ 2.54–2.46) and also the region (δ 0.42–−0.06). The
remaining integral regions were normalised to the
whole spectrum to remove any variation in concentra-
tion prior to Principal Components Analysis (PCA)
[35].

PCA was performed using SIMCA-P 9.0 multi-
variate data analysis software (Umetrics, Sweden), on
mean centred data. PCA is a data reduction technique
that represents multivariate data in a reduced set of di-
mensions, usually fewer than 4, such that an overview
of the data is permitted. The output from the PCA
analysis consisted of scores plots (giving an indication
of the differentiation of classes in terms of biochem-
ical similarity), and loadings plots, which give an in-
dication as to which1H NMR spectral regions were
important with respect to the classification observed
in the scores plots.

Partial least squares discriminant analysis (PLS-DA)
was performed using SIMCA-P 8.0. PLS-DA (and
PLS, below) is a method that may be considered an
extension of PCA and serves to maximise the sep-
aration between two or more sample classes based
on prior knowledge of class membership, and uses a
discrete class identifier in they matrix rather than a
continuous measure of response. The dataset was split
randomly into two groups of training (70% of sam-
ples) and test (30%) samples, with a dummyy-matrix
set up to provide information on class. The process
of generating a PLS-DA model on randomly chosen
samples followed by validation was repeated in order
to ensure all extracts were excluded at least once.

PLS was performed using SIMCA-P 8.0 multivari-
ate data analysis software (Umetrics, Sweden), with
mean centering of the data preceding PLS. The dataset
was split randomly into two groups of training (ap-
proximately 70% of samples) and test (approximately
30%) samples. The process of generating a PLS model
on randomly chosen samples followed by validation
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was repeated in order to ensure all extracts were ex-
cluded once. Models were constructed to predict val-
ues for IC50 and ToxED50.

3. Results and discussion

The biochemical content ofA. annua, along with
many other natural products shows variation depend-
ing on geography or season. It is thus important than
any technique used for the analysis of such samples is
able to first and foremost discern the differences be-
tween samples of differing origin. This then enables
some form of quality control to be performed to ensure
that quality and content of the extracts are maintained.
Representative1H NMR spectra are shown inFig. 2.
These spectra (representing extracts of differing IC50
value) show that whilst the artemisinin resonances
themselves are readily apparent, particularly in the
more potent extract 7, there are many other regions of
the spectrum where large differences occur between
the different extracts. In particular, the region between
6.8 and 8.0 ppm has marked differences in the spectra.
The PCA plot obtained from analysis of the1H NMR

Fig. 2. Representative1H NMR spectra for the three IC50 classes, IC50 < 0.1�g/ml (extract 7), IC50 > 0.1�g/ml, <1�g/ml (extract 9)
and IC50 > 1�g/ml (extract 19). Region 2.5–8.5 ppm is expanded vertically by a factor of 6 to allow observation of lower level aromatic
resonances. Resonances attributable to artemisinin are indicated with an ‘A’.

spectra of all the extracts is shown inFig. 3. Each
point on the plot represents one1H NMR spectrum of
an extract, with points of the same number indicating
replicate samples of the same origin. It can be seen
from this figure that each of the samples within a
particular group of replicate samples readily cluster
together indicating the reproducibility of the extrac-
tion process and the analytical methodology. Groups
of samples of differing origin can be discriminated
from one another based on inherent differences in
their biochemical profiles. Using this approach there-
fore, it is possible to monitor the overall make-up
of a sample, and compare the whole extract with
that of previous samples, samples of different origins
or seasonal differences, and use this information to
implement quality assurance of natural products.

The PCA algorithm is an unsupervised method, and
thus uses no information regarding the class of each
sample, with the colour coding solely for the aid of
human visualisation. It is therefore now possible to
re-label the datapoints to reflect the biological activi-
ties of each of the samples. A coding was performed
whereby the data were split into three classes based on
their IC50 value, with the cut-off values being 0.1 and
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Fig. 3. PCA scores plot forA. annua plant extracts. Samples are separated according to original extract number.

1�g/ml. The resulting PCA scores plot can be seen
in Fig. 4. It is apparent that this model (containing
78% variance in the first two PCs) is able to discrim-
inate between the three classes used. This suggests
that 1H NMR spectra contain sufficient information
relating to the physico-chemical properties of the ex-
tract to be able to predict the potential magnitude of
anti-plasmodial activity found in a plant extract. By
interrogating the PCA loadings plot, it was possible
to determine the variables (spectral regions) that are
responsible for this separation, and are thus the re-
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gions that have greatest variation between the extracts.
The loadings plot for this model (not shown) indi-
cates that the spectral regions containing artemisinin
are chiefly responsible for this separation. In order to
ascertain the strength of influence of artemisinin on
the model, regions containing artemisinin resonances
were removed from the dataset and the analysis re-
peated. A very similar separation is achieved, and the
corresponding loadings plot contains variables largely
associated with the resonances aroundδ 3.7–4.0 (data
not shown). The identity of the molecules for which
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these resonances are attributable was not determined.
While these additional resonances, and the ability to
achieve separation using them is of interest, and fur-
ther demonstrates the presence of synergy at work, the
chief aims of the work is to consider the extracts as
a whole, and so all further work considers the entire
spectral region.

Whilst PCA clearly demonstrates the potential of
this technique, a more robust approach to obtaining
predictive data is to employ supervised methods.
These methods involve providing the model with
the values for the variable to be predicted (i.e., IC50
value) for part of the dataset (the training set), with
the model then being optimised based on those val-
ues. Because the algorithm in effect uses the answers
to create the model, it is then necessary to validate
this model using the remaining unused samples (the
test set). Those samples with an IC50 value> 1�g/ml
were excluded from this analysis, for two reasons.
This class is the smallest of the three, and having
larger values means that the model is likely to be
skewed in order to take them into account. In addi-
tion, the higher values mean that these samples are
not of interest anyway, as they essentially have no
activity. Using the remaining two classes as above
(IC50 < 0.1�g/ml and IC50 > 0.1�g/ml, respec-
tively) it is possible to construct a ‘dummy’y-matrix
whereby the two classes are represented by a 1 or a 0.
Partial least squares discriminant analysis (PLS-DA)
can then be performed on the data to construct a new
model using this additional data. By excluding data at
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random from this model, predictions as to the likely
class membership of the excluded data points can
be made in order to validate the model. As the two
classes are designated either a 1 (IC50 < 0.1�g/ml)
or a 0 (IC50 > 0.1�g/ml), any data point with a pre-
dicted value of greater than 0.5 is considered to be
a member of class 1, and any point with a value of
less than 0.5 is considered to belong to class 0. The
model shown inFig. 5 was constructed using 36 of
the samples (the training set), whilst 10 were used
to validate the model (test set). It can be seen from
the figure that all the data points from both training
and test sets are correctly predicted in what is overall
a robust model withR2 = 0.90, Q2 = 0.89, where
R2 is the variance, andQ2 is the cross-validated vari-
ance, or predictive ability of the model. (As a guide,
a value ofQ2 > 0.5 is generally considered to be
good [35]). The analysis was repeated five times
(with samples split into different training and test
sets each time), with all samples correctly classified
in all models, with >91% of samples predicted with
>99% confidence.R2 values ranged from 0.90 to
0.92, andQ2 values from 0.88 to 0.90. Two compo-
nents were used in all models. While it may appear
that only the same amount of information is available
from both the PCA and PLS-DA models, the fact that
more robust validation is available for the supervised
PLS-DA method means that the results have greater
credibility. Thus using this PLS-DA model, it would
be possible to predict those samples that are likely to
have anti-plasmodial activities of<0.1�g/ml.
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Table 1
Summary of predicted IC50 and ToxED50 values for a series ofA. annua extracts

Extract IC50 value (�g/ml) IC50 predicted ToxED50 value
(�g/ml)

ToxED50 predicted Relative
artemisinin levela

1 0.01 0.05± 0.04 27 42± 6 0.47
2 0.01 0.01± 0.02 9 20± 3 0.66
3 0.020 0.027± 0.00 8 22± 6 1
4 0.02 0.00± 0.03 19 17± 6 0.69
5 0.020 0.065± 0.005 65 26± 11 0.44
6 0.02 0.06± 0.02 50 33± 2 0.34
7 0.0296 0.0262± 0.0003 171 – 0.45
8 0.04 0.03± 0.02 11 12± 2 0.91
9 0.169 0.209± 0.008 69 54± 4 0.18

10 0.13 0.17± 0.01 26 28± 5 0.14
11 0.29 0.16± 0.04 41 75± 4 0.15
12 0.30 0.20± 0.03 66 62± 2 0.21
13 0.31 0.22± 0.04 8 33± 6 0.18
14 0.32 0.22± 0.02 76 72± 3 0.20
15 0.47 0.23± 0.04 50 60± 5 0.12
16 8.55 0.21± 0.03 46 30± 1 0.04
17 24.67 0.20± 0.03 72 40± 12 0.02
18 4.2 0.10± 0.01 20 48± 14 0.02
19 3.9 0.243± 0.002 – – 0.04

a Obtained from the1H NMR peak intensity for the artemisinin peak at ca. 6.1 ppm. Values expressed relative to the highest peak, that
of extract 3.

The PCA and PLS-DA models discussed above
give a good indication as to the likely magnitude of
anti-plasmodial activity. This approach however is
based on an artificially imposed classification i.e.,
IC50 < 0.1�g/ml or >0.1�g/ml, which whilst giving
a clear indication of potential anti-plasmodial activ-
ity, uses classes that may or may not be significant.
This can be taken one step further however, with the
prediction of the actual IC50 value for each of the
extracts. Instead of the dummyy-matrix constructed
for the PLS-DA analysis, it is possible to construct
a model using the IC50 values obtained for each of
the extracts from a biological assay. The result can
then be used to predict values for test data. Three
components were used for all models, with >87% of
samples predicted with >99% confidence.R2 values
ranged from 0.83 to 0.93, andQ2 values from 0.62
to 0.91. The model construction process was repeated
in order to exclude every extract from the training
set once (with additional samples being removed on
a random basis). The overall predictions for each ex-
tract are summarised inTable 1. It can be seen that
in general the predicted value is reasonably close to
the actual value (the correlation between average pre-

dicted versus actual values is 0.90), and this clearly
demonstrates the potential of such an approach. If
the predicted IC50 values were used to classify the
extracts into two classes, IC50 greater or less than
0.1�g/ml, then all extracts would be placed in the
same class as if the actual data were used. This illus-
trates the fact that this method of analysis can be used
as a first step filtering technique in order to identify
key extracts worth pursuing using other approaches.
Whilst the relatively inactive class 3 were excluded
from the model building process, looking at how the
model deals with the excluded class is of interest. In
this case, the predictions are inaccurate in terms of
absolute numbers, but put the samples at the top end
of values from class 2, i.e., it correctly indicates that
these samples would be least active.

Whilst the IC50 value assigned to each extract gives
an indication as to the potential anti-plasmodial activ-
ity, of equal importance with respect to development
of any extract as a viable pharmaceutical, is the likely
toxicity of any such extract. In addition to the IC50
measurements therefore, each extract was analysed us-
ing an in vitro mammalian KB cell line as a measure of
cytotoxicity (ToxED50) of the extract. By constructing
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new models using the ToxED50 rather than IC50 val-
ues, it is possible to predict values for ToxED50 using
the same NMR spectra. An example PLS-DA plot is
shown inFig. 6, with the samples separated into those
with a ToxED50 value of > or<65�g/ml (one extract,
extract 7, with a ToxED50 value of 171.3�g/ml was
excluded for the same reasons as the extracts excluded
with IC50 of >1�g/ml. One further extract, number 19,
was excluded due to insufficient material being avail-
able for the ToxED50 measurement). The analysis was
repeated five times (with samples split into different
training and test sets each time), and >90% of samples
were correctly classified in all models, with >84% of
samples predicted with >99% confidence.R2 values
ranged from 0.78 to 0.94, andQ2 values from 0.69 to
0.84. Three, four or five components were used in all
models. Although the statistics reveal that the models
are not as good as the ones created for the IC50 values,
these models are still able to give a good indication as
to the likely toxicity of a particular plant extract. That
said however, the classes used are, as for the IC50 data
analysis, arbitrary classes. In order to obtain predicted
ToxED50 values for the extracts, PLS was again per-
formed using the assay data to construct models.

Four, five, or six components were used for all PLS
models, with >78% of samples predicted with >99%
confidence.R2 values ranged from 0.89 to 0.98, and
Q2 values from 0.73 to 0.94. The model construction
process was repeated in order to exclude every extract
from the training set once (with additional samples
being removed on a random basis). The average pre-

dicted ToxED50 values for each extract (using only
the predictions when a particular sample was in the
test set) are summarised inTable 1. It can be seen
that as with the IC50 predictions, the predicted values
are, overall, in close agreement with the actual values,
although the average predicted values versus actual
values correlation is only 0.60, compared with the
0.90 value obtained from the IC50 models. The im-
portant point however, is that by using the same NMR
spectra in modelling both IC50 and ToxED50 values,
it has been possible to predict reasonable values for
two different parameters which would normally re-
quire two separate assays to be run to obtain the same
information. Using this information, it may be that
criteria could be set-up to identify the most promis-
ing extracts for further study. Dividing the IC50 value
by the ToxED50 value for each extract for example,
would result in a value for each extract whereby the
smaller the number, the more interesting the extract
in terms of small IC50 and large ToxED50 values. If
this calculation is carried out using the actual values
and the predicted values for IC50 and ToxED50, then
with the exception of extract 18 (from the IC50 class
3), there is very good agreement between the order
of samples from the two sets of values. This work
demonstrates the potential of1H NMR spectroscopy
and chemometric analysis as a tool for the prediction
of anti-plasmodial activity of plant extracts.1H NMR
spectra provide a biochemical fingerprint for each of
the samples analysed, from which anti-plasmodial ac-
tivities can be predicted using different chemometric
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techniques. Chemometric analysis can take place on
several levels, such as the unsupervised method of
PCA, giving an indication of the likely magnitude of
anti-plasmodial activity, or the more involved PLS,
which attempts to put a numerical figure on such activ-
ity. While this study clearly demonstrates the potential
of the technique, more samples would increase the ro-
bustness and predictability of the models produced. It
is of particular importance to ensure the whole range
of potential activities is covered within the training
set in order to predict test-set samples as accurately
as possible. The values obtained using the available
samples were such that the conclusions reached using
predicted values would be the same as those reached
using the actual values. The work also demonstrated
the fact that a single NMR spectrum for each extract
could be used in more than one model, effectively
removing the need for not one, but multiple assays.
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